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FITTING POPULATION MODELS TO MULTIPLE SOURCES 
OF OBSERVED DATA 

GARY C. WHITE,' Department of Fishery and Wildlife Biology, Colorado State University, Fort Collins, CO 80523, USA 
BRUCE C. LUBOW, Colorado Cooperative Fish and Wildlife Unit, Colorado State University, Fort Collins, CO 80523, USA 

Abstract: The use of population models based on several sources of data to set harvest levels is a standard proce- 
dure most western states use for management of mule deer (Odocoileus hemionus), elk (Cervus elaphus), and other 
game populations. We present a model-fitting procedure to estimate model parameters from multiple sources of 
observed data using weighted least squares and model selection based on Akaike's Information Criterion. The pro- 
cedure is relatively simple to implement with modern spreadsheet software. We illustrate such an implementation 
using an example mule deer population. Typical data required include age and sex ratios, antlered and antlerless 
harvest, and population size. Estimates of young and adult survival are highly desirable. Although annual estimates 
are desirable, the procedure also can be applied-with less precision-to data sets with missing values in any of the 
data series. The model-fitting procedure adjusts input estimates and provides estimates of unobserved parameters 
to achieve the best overall fit of the model to observed data. Rigorous, objective procedures such as those described 
here are required as a basis for wildlife management decisions because diverse stakeholder groups are increasing 
the intensity with which they scrutinize such management decisions. 
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Modeling populations to set harvest levels and 
other management strategies has become the 
norm in wildlife management (Bartholow 1992, 
White 2000). For example, the Colorado Division 
of Wildlife builds or modifies such models annual- 

ly for each of the data analysis units (DAU) in the 
state. The division uses these models to project the 
population and determine harvest objectives for 
the upcoming hunting season. To develop these 
models, data are collected on the DAU population 
(White and Bartmann 1998a, Bowden et al. 2000). 
In Colorado, measured attributes have included 
young:female and male:female ratios, either pre- 
harvest or postharvest (Czaplewski et al. 1983, 
Bowden et al. 1984, Pojar et al. 1995); harvest 
(White 1993, Steinert et al. 1994); survival with 
radiocollars (White et al. 1987, Bartmann et al. 
1992, White and Bartmann 1998b); neckbands 
(White and Bartmann 1983) or mortality transects 
(Bartmann 1984, Bartmann and Bowden 1984); 
population size from quadrat counts (Kufeld et 
al. 1980, Bartmann et al. 1986, Pojar et al. 1995); 
mark-resight (Bartmann et al. 1987, Bear et al. 
1989, Neal et al. 1993, Bowden and Kufeld 1995); 
line transects (White et al. 1989, Pojar et al. 
1995); change-in-ratio (Otis 1973), catch-effort 
(Laake 1992), and pellet group counts (Bowden 
et al. 1969, Freddy and Bowden 1983a,b). 

Typically, biologists who build models based on 
data collected from a DAU population align or 
otherwise match the model predictions to the 
observed values manually in an ad hoc and sub- 
jective fashion. They do this by changing model 
parameters until the predictions match some 
prior expectations or visually appear to approxi- 
mate the data (e.g., Bartholow 1992). However, 
this actually is a statistical parameter estimation 
problem and more formal solution methods are 
available. We describe a statistically rigorous, 
objective, yet relatively easy-to-implement proce- 
dure for estimating parameters of population 
models from multiple types of population data. 
We use a mule deer example from the Piceance 
Basin in northwest Colorado, USA, to illustrate 
the procedure. Despite the emphasis on game 
management, the technique generally is applica- 
ble to fitting any wildlife population model to 
multiple types and sources of data. More mecha- 
nistic models that relate population responses to 
environmental or management variables also can 
be fit with this approach, although data require- 
ments for such applications are higher. 

METHODS 

Data Collection 

Age and sex ratios for the Piceance Basin mule 
deer population were estimated with helicopter 
surveys conducted during December or early Jan- 1 E-mail: gwhite@cnr.colostate.edu 
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uary prior to antler drop each biological year 
from 1981 to 1997 (except 1987 and 1996). Esti- 
mates were based on R = 1,041 deer classified/year 
(SD = 249, min = 759, max = 1,539). Survival esti- 
mates for 1981-1995 (White et al. 1987, Bart- 
mann et al. 1992, White and Bartmann 1998b, 
Unsworth et al. 1999) of fawns were based on c = 

106 collars/year (SD = 45, min = 45, max = 161), 
and survival estimates of adults were based on iE = 

51 collared females/year (SD = 27, min = 8, max 
= 93). This assumed that survival of males >1 year 
old was the same as for adult females. We radio- 
collared deer in November or early December 
and computed survival for a 1-year interval. We 
developed estimates of harvest from telephone 
surveys of 5% of the license holders for over-the- 
counter antlered licenses, and from 20 to 50% of 
limited antlerless licenses (Steinert et al. 1994). 
Population estimates for 1981-1985 and 1988 
were developed from 120 0.25-mi2 (0.67-km2) 
quadrats surveyed by helicopter following Kufeld 
et al. (1980). Surveys were conducted during Jan- 
uary or February. We estimated sightability of 
deer on quadrats as 0.67 following Bartmann et 
al. (1986), meaning that each deer counted on a 

quadrat represented 1.5 deer. We will refer to the 
entire set of direct field estimates for parameters 
as 0i (where i references all years and field mea- 
surements sequentially) and their estimated stan- 
dard errors as SE(0i). 

Population Model 
The model must be kept simple to economize 

the amount of input required to estimate model 
parameters from observed data. However, the 
model must adhere to biological authenticity to 
be useful in projecting population status. For 
illustration purposes, we develop a model for 
mule deer to correspond with an example data 
set. Mule deer population dynamics are much 
more complicated than the model portrays. How- 
ever, routine measurement of a wider array of 

inputs required for a more complicated model is 
unrealistic. Thus, the model presented here is a 
reasonable trade-off between what can be mea- 
sured practically and what is needed to predict 
mule deer populations for management purpos- 
es. Even this simplified model will have more 
potential parameters than the data can support. 
Consequently, we compare a family of related 
models with additional simplifying assumptions 
and select the most parsimonious using Akaike's 
Information Criterion (AIC; Burnham and 
Anderson 1998). We begin by defining the most 

general model; reduced parameter variants are 
described in the section on Model Fitting. 

We model the population in annual time steps 
referenced to the time of annual surveys in 
December, following harvest. Our model in- 
cludes only 2 age classes: fawns and adults. We 
chose to not distinguish yearlings from older ani- 
mals because survival data were not collected to 

support this additional complication. The gender 
of fawns is not differentiated until they are 
counted in December, at which point a constant 
proportion, r, is added to adult males. Thus, we 
define 3 population segments: fawns (labeled 
Juveniles or J), does (labeled Females, F), and 
bucks (labeled Males, M). Fawn, female, and 
male population segments survive the year 
according to specific annual rates, SJ(t), SF(t), 
and SM(t). New fawns are recruited into the pop- 
ulation in December in proportion R (t) to each 

year's December adult female population. Due to 
harvest and aging, does present in December do 
not match the does that gave birth, however, we 
define recruitment relative to the December does 
to match the age ratio data collected in the field. 
Annual harvest mortality is modeled separately 
for males, HM(t), and females, H1(t); is additive 
and independent of natural mortality; and is 
applied to the population following natural mor- 
tality and prior to the next December count. 
Thus, the equations to project the population 
from December of year t forward to December of 
year t + 1 after natural mortality, harvest, and 
recruitment are: 

NF(t+ 1) = rSj(t) NJ(t) + SF(t) NF(t) - HF(t+ 1), 

NM(t+ 1) = rSj(t) NA(t) + SM(t) NM(t)- HM(t+ 1), 
and 

NJ(t+ I) = Rj(t+ 1) N,(t+ 1). (1) 

Total population size (NT) in early December in 
year t is thus 

NT(t) = Nj(t) + NF(t) + NM(t). (2) 

The M:F ratio, RM(t), is also computed in the model 
for comparison to values measured in the field 

RM(t) = 
NM(t) 

/ NF(t). (3) 

Because we collected no explicit data on adult 
male survival, separate annual estimates of male 
and female survival are not identifiable, so they 
must be modeled using fewer parameters. One 
plausible simplifying relationship assumes that 
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male survival follows the same pattern through 
time as female survival, SM(t) = ySF(t). That is, y 
could be included as a parameter to be estimated. 
Although either a constant recruitment sex ratio, 
r, or y could be estimated with our data, estima- 
tion of both, or time-specific values of either 
would require a more elaborate data collection 
operation. In preliminary model runs, we tested 
the value of adding sex differences and found it 
explained a negligible amount of variation. 
Therefore, we chose to use the simplest model 
possible by setting r = 0.5 and y = 1 so that adult 
male and female natural recruitment and survival 
rates are equal. Thus, differences between the 
sizes of the adult sex class are only due to harvest. 

For each year, the model contains values for 10 

parameters: NT (t), NM (t), NF (t), NJ (t), HM (t), 

HF (t), SF (t), SJ (t), RM(t), R (t). However, 5 rela- 
tionships impose biological structure on these 
parameters given in Equations 1-3, leaving 5 un- 
knowns to be measured each year. In addition to 
these, adult male and female population size 
must be measured in at least 1 additional year 
(typically initial values, NM (0) and NF (0)) for the 
model to be identifiable. Thus, for a model of T 
years, a minimum of 5 T + 2 values must be ob- 
served to fit this model. If fewer values were mea- 
sured than the number of unknowns in the 
model, additional assumptions to simplify the 
model would be required. 

Model Fitting 
It is important to distinguish between the set of 

estimated model parameters (referred to collec- 
tively as 

0i) 
versus estimates made directly from 

field observations (collectively, 0i). Of the 10 
annual values included in our model, 

Oi, 
we col- 

lected field data to estimate 6 [HM(t), HF(t), SF(t), 

S1(t), RM(t), 
and R!(t)] in most years (with occa- 

sonal missing values) plus measurements of NT(t) 
in 6 years. These field estimates constitute the set 

Oi. Notice that in this example, more annual field 
measurements (6) were made than the number of 
unknowns (5) in the model, providing additional 
degrees of freedom for statistical estimation. 

If, as in our example, all of the unknown para- 
meters in the population model, 0i, can be esti- 
mated directly from field data (i.e., by setting 0i = 

0i), then the population model can be used 
directly (without fitting) to project the popula- 
tion. The population for the first year is taken as 
the population estimate from quadrat surveys for 
the same year multiplied by the sightability factor 
(Bartmann et al. 1986) of 1.5. Population seg- 

ments are then initialized by using estimated age 
and sex ratios to partition the estimated popula- 
tion. Survival and recruitment rates are then used 
to project subsequent annual populations. How- 
ever, this approach does not use all of the popu- 
lation- and age-ratio data after the first year and, 
thus, is inefficient. Small errors in survival rates 
can accumulate over time, resulting in large 
errors (either positive or negative) in the pro- 
jected population size in later years. This method 
also requires direct estimates of survival and har- 
vest every year. We make such a projection to 
demonstrate its poor performance. 

Because we have more measurements than un- 
knowns, an improved parameter estimation strat- 
egy that uses all of the data is to treat each of the 
parameters directly estimated from field data, 0i, 
as an observation and then select corresponding 
values for each model parameter, 

Oi, 
so that the 

sum of weighted squared errors between field- 
and model-based estimates of all parameters 

si 

= 
[(•i 

-- i)/SE(Oi)]2 

(4) 

is minimized. The weight of each of the field 
measurements is taken as the reciprocal of its 
variance. Each parameter may have been estimat- 
ed with field measurements but has an associated 
(often large) error, 

SE(0i), 
and so better estimates 

can be developed using all of the data. Any change 
in a model-based estimate from its original field- 
based estimate increases the size of the error, and 
thus penalizes the optimization for the change. 
The resulting fit of the model balances the fit to 
each of the independently estimated field para- 
meters based on the relative precision of each. By 
using SE(0i) to weight the difference 

Oi 
- 

0i, 
the 

resulting residual error is approximately a stan- 
dardized normal variable with mean zero and 
standard deviation 1. Thus, the varying scales of 
the observed data are standardized to have the 
same relative scale. The ei can be viewed as a sam- 
ple of size n from a Normal(0, 1) distribution 
with joint log likelihood 

n 1 
log = 

- - 
log(2;)- - 

i, (5) 2 2 i=> 
because a is assumed to be 1 in the usual normal 

log likelihood. Hence, a is not estimated as part 
of the likelihood. The sample size n is the total 
number of E2 summed in the objective function. 
To maximize the log likelihood function, only 
the term E 2 needs to be optimized, and this 
process can be done easily with the optimizer 
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function of spreadsheet software. This estimator 
is termed an ordinary least squares estimator 
(OLS; Seber and Wild 1989) because covariances 
of the Egi across the different types of field mea- 
surements are assumed to be zero. 

We fit a family of models to the field measure- 
ments using the OLS procedures described 
above. Models in this series differed only in the 
amount of temporal (annual) variation allowed 
for each of the survival and age ratio parameters. 
Year-specific harvest was assumed to be known-- 

SE[Hi(t)] = 0; 1i(t) = Hi(t)--and thus not modi- 
fied in the model fitting. All models in this series 
require estimating initial sizes for adult male and 
female population segments. We first consider 
Model I with constant recruitment and adult and 
fawn survival across years, with 5 parameters esti- 
mated. Next, Model 2 with a linear trend in age 
ratios, but constant adult and fawn survival is con- 
sidered, with 6 parameters estimated. Models 3-7 
include year-specific estimates for various combi- 
nations of the recruitment rate and adult and 

juvenile survival rates. Each of these models has 
15 year-specific fawn survival parameters estimat- 
ed for the 18-year period (1981-1998) with 3 miss- 
ing values in each. Like Model 2, Models 4 and 5 
assume a linear trend in recruitment. Model 7, 
the most general, adds 45 year-specific estimates 
of recruitment and survival to the 2 initial popu- 
lation segment size estimates for a maximum of 
47 parameters. 

We used model selection based on information 

theory (Burnham and Anderson 1998) to select 
among these various models using the 

AICc 
value 

2K(K +1) 
AICM =-2log +2K + , (6) 

n-K-1 

where K is the number of paramreters estimated 
via optimization to minimize E2. Note that 
-2 log9 is equal to 

•i plus a constant, so that 
only the ~E term needs to be included in the cal- 
culation of AICc for model selection, which is based 
only on relative values. Standard errors of parame- 
ter estimates can be obtained by inverting the neg- 
ative of the information matrix of the log likelihood 
function. The information matrix is the matrix of 
second partial derivatives of the log likelihood 
with respect to each of the parameters estimated. 

The OLS estimator is not fully efficient (Seber 
and Wild 1989) because the covariances of the ci 
across the different types of field measurements 
are incorrectly assumed to be zero. Although ser- 
ial autocorrelation is not likely to be a problem 
with the direct field estimates because the surveys 

are performed independently across time, the 
fact that many of the model parameters being esti- 
mated are shared across equations and affect sev- 
eral model predictions (e.g., adult survival affects 
both the population size and age and sex ratios) 
may induce covariances. The residuals in year i 
can be considered a vector, gi, with k elements cor- 
responding to each different type of measure- 
ment. The 

-g 

vectors each can be considered to be 
a multivariate normal sample with covariance 
matrix 1. The log likelihood then becomes 

nk n 1 
, 

(7) logy =- log(2r)) ilog( l ) ~ 

=1(7) 
2 2 2 - =" 

where 
J&_. 

is the determinant of 1. 
Theory for estimating 

_ 
and fitting such a 

model (termed seemingly unrelated regressions, 
SUR) is provided by Gallant (1987), and imple- 
mented in PROC MODEL (SAS Institute 1988) 
only for data sets where measurements for each 
of the field observations are all taken each year. 
Gallant (1987) and Seber and Wild (1989) also 
discuss more elaborate estimators that iteratively 
estimate 

_ 
and the parameters being estimated 

simultaneously, again implemented in PROC 
MODEL (SAS Institute 1988). The advantage of 
these more elaborate estimation schemes is to 

improve efficiency, but this is accomplished at 
some cost due to the increased number of para- 
meters that must be estimated for the covariances 
of the field measurements. More importantly, the 
complexity of these more advanced procedures 
discourages their adoption for most wildlife man- 
agement purposes. Note that the OLS estimates 
are a special case of the SUR estimates with 

_ defined as an identity matrix. 

RESULTS 
Data collected on the Piceance mule deer herd 

in northwestern Colorado (Table 1) exhibit high 
year-to-year variation in fawn survival, and a grad- 
ual decline in fawn:doe ratios from 1981 to 1997. 
In addition, quadrat population estimates demon- 
strate high sampling variation, i.e., large standard 
errors. In contrast, standard errors of age and sex 
ratios are small relative to population estimates, 
and survival estimates are the most precise of all 
the estimated parameters. 

We first built a naive 2-age class model (fawns, 
adults) with sex-specific classes for adults from 
these data using direct field estimates of the para- 
meters (i.e., with no additional model fitting). 
The initial population was computed as 1.5 times 
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the 1981 population estimate using the assump- 
tion that 67% of the animals were counted on the 

quadrats sampled due to sightability limitations, 
based on the work of Bartmann et al. (1986). Age 
and sex structure of the initial 1981 modeled 

population was computed from the 1981 age and 
sex ratios. Years (1987, 1996, 1998) with missing 
fawn:doe ratios were replaced by the mean of the 
series (however, these values are not used later 
for parameter estimation in the model fitting 
procedure). Although a downward trend exists in 
the fawn:doe ratios, using the mean value for 
these years should increase the population size 
for this model's predictions. Nevertheless, with 
these inputs, the buck:doe ratio becomes nega- 
tive and the population declines to zero (Fig. 1). 
Although the population had been thought to be 
declining during the 1990s (i.e., see population 
estimates for a portion of the area modeled here 
in White and Bartmann 1998b), the decline was 
not that severe. Sampling variation in the para- 
meter estimates and the resulting inconsistencies 
cause the model to predict extirpation. Most 
notably inconsistent are the population estimates 
for 1981, 1982, and 1983. The 1982 estimated 
population appears to be much too low, in that 
biologically the population likely could not grow 
from the estimated low point in 1982 to the high- 
er estimate in 1983 (Table 1, Fig. 1). 
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Fig. 1. Estimates and 95% confidence intervals for observable 
(uncorrected for sightability) mule deer population (squares) 
based on quadrat counts from helicopter surveys in the 
Piceance Basin, Colorado, USA, plotted with a naive popula- 
tion projection (line) based on direct field estimates of initial 
population size by age and sex class and annual survival 
rates and harvest. Population projections were not fitted to 
annual age ratio data. Model predictions were multiplied by 
the sightability factor of 0.67 so that predicted and observed 
population values are comparable. 

Model fitting using the OLS estimation proce- 
dure for the series of models indicated that, 
based on AICc, the most appropriate model in 
this sequence is Model 4, with a linear trend on 
age ratios, year-specific fawn survival, but con- 
stant adult survival (Table 2). The Akaike weight 

Table 1. Estimates of fawn and adult survival, fawn:doe and buck:doe ratios, and population size for the Piceance mule deer herd, 
northwestern Colorado, USA, 1981-1995. Missing data are shown as blank entries. 

Fawns:100 does Bucks:100 does Fawn survival Adult survival Population size Buck harvest Doe harvest 
Year Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE 

1981 77.7 5.78 13.8 1.95 0.48 0.068 0.86 0.049 21,103 3,592 2,293 19 
1982 75.5 4.34 11.4 1.34 0.36 0.044 0.81 0.048 16,004 2,425 3,072 10 
1983 78.8 4.83 11.4 1.45 0.05 0.021 0.83 0.045 27,309 3,129 3,512 64 
1984 70.2 4.49 7.4 1.16 0.19 0.039 0.88 0.040 21,723 2,387 2,017 12 
1985 72.5 5.57 7.2 1.38 0.41 0.039 0.92 0.038 21,657 2,822 1,849 30 
1986 63.5 4.11 14.0 1.62 0.42 0.038 0.76 0.068 931 21 

1987 0.15 0.033 0.88 0.083 1,326 24 
1988 74.2 3.76 13.9 2.04 0.35 0.064 0.83 0.108 25,248 2,517 1,449 75 585 19 
1989 65.7 2.72 12.4 1.90 0.77 0.049 0.90 0.051 2,227 95 1,512 59 
1990 61.2 3.32 16.2 2.09 0.32 0.069 0.94 0.035 1,822 92 1,691 48 
1991 46.4 2.26 11.9 1.45 0.49 0.072 0.77 0.052 1,917 92 1,238 45 
1992 45.5 2.85 10.5 1.74 0.14 0.029 0.71 0.048 1,310 68 1,296 70 
1993 42.6 3.04 10.1 2.30 0.65 0.038 0.84 0.038 1,041 63 777 53 
1994 46.1 2.86 7.8 1.67 0.76 0.034 0.88 0.035 1,210 65 221 17 
1995 47.6 3.03 10.7 2.24 0.70 0.038 0.93 0.029 1,489 68 182 16 
1996 1,631 69 206 18 
1997 46.1 3.00 11.5 1.80 1,194 60 442 39 
Mean 60.9 3.73 11.3 1.74 0.42 0.045 0.85 0.051 22,174 2,812 1,782 75 490 38 
SD 13.7 2.6 0.23 0.07 3,886 698 589 
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Table 2. Sequence of models fit to the field measurements reported in Table 1. The number of parameters for each component 
are included in parentheses. 

Model Age ratios Fawn survival Adult survival Initial population Ka AICc b 

1 Constant (1) Constant (1) Constant (1) Buck & Doe (2) 5 1009.1 
2 Linear trend (2) Constant (1) Constant (1) Buck & Doe (2) 6 900.1 
3 Constant (1) Year-specific (15) Constant (1) Buck & Doe (2) 19 366.1 

4c Linear trend (2) Year-specific (15) Constant (1) Buck & Doe (2) 20 203.0 
5 Linear trend (2) Year-specific (15) Year-specific (15) Buck & Doe (2) 34 268.3 
6 Year-specific (15) Year-specific (15) Constant (1) Buck & Doe (2) 33 227.4 
7 Year-specific (15) Year-specific (15) Year-specific (15) Buck & Doe (2) 47 413.3 

a K is the number of estimated parameters in each model. 

b 
AICc 

is the Akaike Information Criterion calculated as E2 + K+2K(K +1) (see text for full definition). CC n-K-1 c Best (lowest AICc) model is shown in bold. 

for Model 4 is >0.9999, indicating that this model 
is by far the most appropriate of the 7 considered. 
Results from Model 4 produce a much more con- 
sistent fit of the model to the quadrat estimates of 
population size (Fig. 2) than the original naive 
model projection (Fig. 1). The predicted decline 
in the population is now consistent with other 
observations of population size estimated on a 
small portion of the study area modeled here 
(White and Bartmann 1998b). The fit of the 
model predictions to the estimated buck:doe 
ratios is reasonable (Fig. 3) and involves only 
small adjustments to fawn:doe ratios (Fig. 3) and 
fawn survival estimates (Fig. 4). Adult survival 
rates are assumed constant, and thus 14 parame- 
ters are saved in this model compared to Model 
5, where this rate is year-specific. Modeling the 
linear trend in recruitment saves an additional 13 

parameters relative to the most general model. 
The strong selection of this model indicates that 
most of the year-to-year variation in observed 
adult survival rates is due to sampling error 
rather than process variation in the actual sur- 
vival rate. The decline in recruitment also is 

clearly distinguished from other explanations for 
the decline in this population. 

Two subtle, but critical, differences between the 

original estimates and those from the best fitted 
model account for the dramatic differences in 

predictions. First, adult survival rate in the fitted 
model is estimated to be 0.88, whereas the geo- 
metric mean of the direct field estimates of adult 
survival rate was 0.85. This small difference is 

enough to change the projection from population 
extirpation to a more modest decline. Second, the 
estimated observable (adjusted for sightability) 
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Fig. 2. Estimates and 95% confidence intervals for mule deer 
population (squares) based on quadrat counts from helicopter 
surveys in the Piceance Basin, Colorado, USA, plotted with 
the best (AICc) fitted model (Model 4) predictions (line) which 
include constant adult survival, a linear trend in recruitment, 
and year-specific juvenile survival rates. Model predictions 
were multiplied by the sightability factor of 0.67 so that pre- 
dicted and observed population values are comparable. 
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Fig. 3. Estimates and 95% confidence intervals for buck:doe 
(triangles) and fawn:doe (squares) ratios from helicopter sur- 
veys in the Piceance Basin, Colorado, USA, plotted with the 
best (AICc) fitted model (Model 4) predictions (solid and broken 
lines, respectively) which include constant adult survival, a lin- 
ear trend in recruitment, and year-specific juvenile survival. 
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Fig. 4. Radiocollar estimates of fawn (squares) and adult 
female(triangles) survival rates from the Piceance Basin, Col- 
orado, USA, compared to best (AICc) fitted model (Model 4) 
predictions (broken and solid lines, respectively) which 
include constant adult survival, a linear trend in recruitment, 
and year-specific juvenile survival. 

starting population in 1981 from the fitted model, 
based on all available data, is 24,203 as opposed 
to the 1981 direct field estimate of 21,103. 

Excel? Version 5/7 and Quattro Pro? Version 8 
spreadsheets with the Piceance mule deer ex- 
ample are available from the Internet at 

http://www.cnr.colostate.edu/-gwhite. Although 
this spreadsheet model is specific to the example 
presented here, it can be used as an example 
from which other population models can be eas- 
ily implemented by making appropriate changes. 

DISCUSSION 
The procedure described here for model fit- 

ting to observed data is a least squares estimation 
approach. If the statistical errors in the estimates 
are assumed to be normally distributed, then the 
procedure gives maximum likelihood estimates. 
Because survival estimates from radiocollars 
might be more appropriately treated as binomial 
variables, the objective function could be 
changed for these estimates to be a binomial log- 
likelihood. In the example presented here, this 
was not done because the survival estimates were 
computed with a staggered-entry Kaplan-Meier 
procedure with some observations that were cen- 
sored. Therefore, a binomial log-likelihood esti- 
mator would not be appropriate. 

One extension that should be considered is to 
incorporate the sampling covariances of esti- 
mates taken in the same year. For example, the 
fawn:doe and buck:doe ratio estimates have a 
sampling covariance because both are estimated 
from the same classification data. Other parame- 

ters might have sampling covariances depending 
on the estimation approach used, e.g., fawn and 
adult survival rates would be correlated if esti- 
mated from band recoveries (White and Bart- 
mann 1983) instead of radios. An appropriate 
technique to handle this within-year covariance 
would be to use matrix algebra to weight the pair 
of estimates by the inverse of their variance-covari- 
ance matrix. Mathematically, the entire optimiza- 
tion process could be formulated as a matrix 
equation equivalent to the SUR procedure 
described, although such an elegant presentation 
would not likely benefit the understanding of the 
procedure by most biologists, nor would it be 
likely to change the modeling results enough to 
alter management decisions in the field. 

The procedure presented here is similar to the 
one described by Lipscomb (1974) where we con- 
sider the weights in his nonlinear programming 
formulation as the inverse of the variance of the 
estimates. The power of modern spreadsheet 
software facilitates rapid implementation of this 
approach, whereas previously, problem-specific 
software, often written in FORTRAN code at sub- 
stantial expense, was not as robust and easy to 
adapt to new problems as the spreadsheet 
approach. The availability of PROC MODEL 
(SAS Institute 1988) provides the flexibility to use 
more elegant estimation procedures, but does 
not permit missing values, thus requiring that all 
field measurements be taken every year. Other 
approaches to population model fitting involving 
Bayesian and Kalman filtering methods have 
been suggested (Schnute 1994, Zheng et al. 1998, 
Miller and Meyer 2000, Trenkel et al. 2000) but 
are sufficiently complex to discourage most man- 
agement agencies from adopting them. We be- 
lieve that the simpler methods outlined here are 
a sufficient improvement over previously avail- 
able methods. Relatively small effort is required 
to apply them, whereas the cost of more ad- 
vanced techniques may not be justified by the 
incremental improvement in efficiency. 

The applicability of model fitting and selection 
procedures presented here is not limited to the 
structure or features of the example mule deer 
model that we used for illustration. There are no 
restrictions on linearity, continuity, functional 
complexity, or parameterization. The structure of 
the most general model considered should 
depend on the complexity of the data available, 
the prior knowledge about the biology of the 
species, and the research or management ques- 
tions of interest. With sufficient data, it is a sim- 
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pie matter to include additional complexity such 
as additional age classes or separate survival rates 
by sex. Density feedback from population size to 
vital rates can be modeled as a simple linear rela- 
tionship, or using a nonlinear function with a 
more appropriate shape such as the logit, to en- 
force biological constraints. Common harvest 
complexities encountered for some species (e.g., 
elk), such as wounding losses, illegal kill, and dif- 
ferential harvest mortality due to antler point 
regulations, can be modeled by constant, propor- 
tional, or more complex functions. When precise 
harvest records are unavailable, unlike in our 

example, harvest itself can be considered a para- 
meter to be estimated. Our modeling of juvenile 
survival as a function of time illustrates how all of 
these additional biological and management 
mechanisms can be implemented. 

One desirable objective of more complex, 
mechanistic models of a population is their abili- 
ty to project forecasts of the relevant covariates. 
The model in our example modeled recruitment 
as a function of time and adult survival as a con- 
stant. Only the fawn survival rate was year-specif- 
ic. Therefore, population projections can be 
made using this model by adding additional 
assumptions only about the future fawn survival 
rate. Using a mean value is one such assumption 
that facilitates projections. However, a model that 
could predict future fawn survival as a function of 
more easily forecast variables would be an 
improvement and should be the focus of future 
research. For example, a particularly valuable 
class of extended models incorporate explanato- 
ry variables into the population dynamics. Covari- 
ates can be used to provide estimates of winter 
severity or drought (McCulloch and Smith 1991). 
Furthermore, juvenile survival or recruitment 
might be modeled as a function of commonly 
available weather covariates such as seasonal tem- 

peratures, precipitation, or snow depths. These 
relationships need not be linear. To accommo- 
date severe winters, an approach that works rea- 
sonably well is to compute survival each year as Si 
= sWi, where Wi represents a winter severity index 
with W = 1.0 representing an average winter, val- 
ues of 

Wi 
> 1 are more severe than normal, and 

O W < 1 less severe than normal. The values of 
s and each V are additional parameters that must 
be estimated to fit the data to the model. The 
value of such models is that they aid researchers 
in understanding causes of population change 
and managers in anticipating the future effects of 
current and forecast environmental conditions. 

Numerical considerations can cause problems 
with the optimization required to determine the 
maximum likelihood estimates. Some models 

require more effort to find the optimal solution 
than other models. A useful option available with 
many spreadsheet optimization programs is to 
allow automatic scaling of the optimization vari- 
ables. Otherwise, the several orders of magnitude 
difference of parameters (e.g., survival rates vs. 
population sizes) will cause numerical difficulties 
with the optimizer, and no solution will be 
achieved. When data are sparse (many missing 
values) or the model is overparameterized, these 
problems can prevent convergence of the opti- 
mization or cause it to converge to a local mini- 
ma. For difficult models, a good approach is to 
begin by optimizing only the parameters that 
have the most variation while fixing the others at 
the values of the field estimates. In the Piceance 
mule deer example, we started the optimization 
process with just the population estimates, hold- 
ing age ratios, fawn survival, and adult survival 
constant. After we calculated this intermediate 

solution, we progressively added the linear trend 
on age ratios, year-specific fawn and adult sur- 
vival, and age ratios, to the optimization, using 
the prior solution as initial values. At each step, 
all parameters estimated by optimization at the 
previous step were reestimated simultaneously 
using the added parameters, so that each solu- 
tion was globally optimized. 

For some problems, particularly ones with 
sparse or imprecise data, the optimizer can be 
given numerical constraints on any combination 
of parameters to ensure that they remain within 
biologically reasonable limits. This should be 
done sparingly to avoid biasing results with pre- 
conceived notions of the values of parameters. 
Typically, it should be necessary only to constrain 
parameters to the range of biologically feasible 
values, such as 0.0 < S < 1.0. If biologically unrea- 
sonable results are obtained even with these min- 
imal constraints, this suggests that the data set is 
inadequate and probably should be abandoned 
or supplemented with additional data, or the 
model should be simplified by removing some 
parameters. 

We emphasize that all field estimates are 
assumed to be unbiased and accompanied by 
appropriate (and unbiased) measures of preci- 
sion. Because the estimated precision of each 
measured value is used to weight that value in the 
model fitting, parameters with overestimated pre- 
cision, due to either bias or improper methods of 
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estimation, will be given greater consideration 
than they deserve. When such a situation is sus- 
pected and cannot be corrected, the suspect data 
can either be discarded or given less weight by 
inflating the precision estimate, both of which 
are ad hoc approaches that we discourage. 

In the example presented here, data were avail- 
able for almost every parameter estimate for most 
years, with quadrat population estimates being 
the notable exception. Because our data set was 
nearly complete, the most general models we 
could examine included those with annual varia- 
tion in various vital rates. However, when data are 
more sparse, as is common, stronger assumptions 
must be made to simplify models by, for example, 
considering only average survival or simple 
trends. Typically, survival estimates from radio- 
collars are not available for most mule deer DAU 
in Colorado. Also, many of the mule deer DAU 
and almost all elk DAU lack field-based estimates 
of population size, adding another complication 
to the model-fitting procedure. Model fitting 
with field estimates of only age and sex ratios, in 
the absence of survival and population data, 
often results in driving the population size pro- 
jections to infinity. Statistically, this is a parameter 
identifiability problem. Biologically, this behavior 
is exhibited because the larger the population, 
the less impact is produced when estimated har- 
vest is subtracted from the model population, 
allowing more flexibility to fit the observed age 
and sex ratios. For these DAU, assumptions must 
be made about the population's size at some point 
in time. Although no specific minimum data set is 
required to apply this technique, sparser and less 
precise data sets require more subjective assump- 
tions, can be expected to yield less precise results, 
and may even fail to converge on a biologically 
reasonable solution at all. Caution in the inter- 

pretation of such inadequate data sets is strongly 
advised. Addition of subjective constraints to the 
optimization process, in such cases, also is strong- 
ly discouraged because this will lead to subjective 
conclusions that are not supported by the data. 

MANAGEMENT IMPLICATIONS 

The model-fitting procedure presented here 
provides a rigorous, objective model alignment 
procedure that is easy to implement with stan- 
dard PC spreadsheet software. Most wildlife inves- 
tigations lack the necessary data with which to 
estimate all the required parameters before a 
model is built. Even if data are plentiful, incon- 
sistencies in the data will likely cause the perfor- 

mance of the model to be unsatisfactory. Thus, a 
model-fitting procedure is required to decide 
which estimates to adjust, and by how much, to 
achieve the best alignment. However, spread- 
sheet models should be used neither to legitimize 
subjective opinions nor as a substitute for good 
field data (see Unsworth et al. 1999 for recom- 
mended data requirements). As population mod- 
els are increasingly used to manage wildlife pop- 
ulations, more rigorous and objective methods 
should be used to build these models, so that 
they can withstand the public scrutiny of an 
increasingly involved and diverse set of stake- 
holder groups. 
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